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1. Introduction
Parabolic differential equations in three dimensions and on multilayers often
arise in engineering processes[1-5]. An example is x-ray lithography which is
an important technology in micromanufacturing. The process is composed of a
mask and a photoresist deposited on a substrate. A typical photoresist is the
photosensitive polymethylmethacrylate (PMMA). The mask layer creates a
desired pattern on the photoresist by selectively allowing the transition of
irradiation from an x-ray beam. Prediction of the temperature distribution in
three dimensions in the different layers (mask, photoresist and substrate) is
essential for determining the effect of high flux x-ray exposure on distortions in
the photoresist due to thermal expansion and on bonding between resist and
substrate. A thorough understanding of the problem has been hampered by the
difficulties involved in solving the differential equations describing temperature
profiles in multilayers. These difficulties include the unknown value at the
interface between layers, and the small spatial scale measured in microns. In
applications of numerical methods for solving parabolic differential equations
on multilayers, the common approach, to overcome the interface problem, is to
apply the iteration method. As such, the unknown value at the interface
between layers is replaced by the value at the previous time step, and is iterated
until the solution is obtained. However, the iteration method in the three-
dimensional case requires too much computational time. Furthermore, the
small spatial scale results in a fine spatial grid size compared with the time
increment. Thus, the mesh ratio is large, which causes many second-order
accurate schemes, such as the Crank-Nicloson scheme and the Douglas ADI
scheme, to converge slowly to the steady-state solution.

In this paper, we present three-dimensional numerical procedures for solving
parabolic differential equations on multilayers. To avoid iteration at each time
step, the ADI method is employed in these models. There are many ADI
schemes for solving parabolic differential equations. A simple well known
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three-dimensional ADI scheme is the Douglas ADI scheme. It is unconditionally
stable and second-order accurate. However, it is slow in convergence when used
to simulate fast transient phenomena or for computations on fine spatial
meshes. In this study, a generalized three-dimensional Douglas ADI scheme,
which is suited for either simulating fast transient phenomena or for numerical
computations on fine spatial meshes, is developed. Numerical models for
multilayers that employ this scheme are formulated. To overcome the problem
with the unknown value at the interface between layers, the generalized “divide
and conquer” procedure for solving tridiagonal linear systems is applied. As
such, the computational procedure is simple and efficient. 

2. Generalized ADI scheme
Consider the three-dimensional parabolic equation

(2.1)

where µ is the diffusivity coefficient. We let un
ijk denote the approximation to U

(i∆x, j∆y, k∆z, n∆t), where ∆x, ∆y and ∆z are the grid sizes in the x, y and z
directions respectively, ∆t is the time increment, i = 0, …, Nx , j = 0, …, Ny, and
k = 0, …, Nz. We use the centred-difference equation,

to approximate ∂
2U

∂x2, and so on. Then, the three-dimensional Douglas ADI
scheme can be written as follows:

(2.2a)

(2.2b)

(2.2c)

where rx = µ∆t
∆x2, ry = µ∆t

∆y2 and rz = µ∆t
∆z2. The above scheme is unconditionally stable

and second-order accurate. Based on the idea in Samarskii and Vabishchevich[6],
we develop a generalized Douglas ADI scheme as follows:

(2.3a)
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(2.3b)

(2.3c)

where ε is a small positive number. When ε = 0, the above scheme reduces to the
Douglas ADI scheme. 

For investigating the stability of the system, we assume rx, = ry = rz = r, for
convenience. Without the term ∆fijk

n+ 1
2, we rewrite (2.3b) and (2.3c) as

(2.4a)

(2.4b)

Eliminating uijk
n+ 2

3 – un
ijk, one obtains

(2.5)

Substituting (2.5) into (2.3a), we obtain an equivalent scheme to (2.3), namely,

(2.6)

In matrix form (2.6) may be expressed as

(2.7)

It can be seen that matrices A and B are symmetric. Hence, H = A–1 B is a N × N
symmetric matrix. As such,

(2.8)

If one expands (2.6) in a Fourier series, one obtains, by Parseval’s equality, 

(2.9)

where vl
nis the coefficient of the Fouier series. It can be seen that 

(2.10)

where the amplification factor is 
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(2.11)

In equation (2.11), β1 = sin2 σ1h
2 , β2 = sin2 σ2h

2 and β3 = sin2 σ3h
2 , (0 < β1, β2, β3 < 1),

σ1 = iπ, σ2 = jπand σ3 = kπ; i, j, k = 1, …, N – 1. Therefore, the scheme (2.6) is
stable if and only if |G| < 1 + c ∆t, where c is a constant. When 0 ≤ ε < 1, it is
seen that

(2.12)

and

(2.13)

From (2.12) and (2.13) it is seen that – 1 < G < 1, hence, |G| < 1. Thus, the new
ADI scheme is unconditionally stable. With |G| < 1, we have from equation
(2.10)

(2.14)

Further, when r is large, implying that max(rβ1), max(rβ2) and max(rβ3) are also
large, the dominating terms in (2.11) are 8r3(1 – ε)3β1β2β3 and 8r3(1 + ε)3β1β2β3.
As such,
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(2.15)

while G ~ 1 if ε = 0. It is seen from equation (2.10) that |vi
n in the Douglas ADI

scheme (ε = 0, G ~ 1) goes to zero very slowly as n → ∞. On the other hand, the
generalized Douglas ADI scheme (ε > 0, G < 1) goes to zero much faster. A large
mesh ratio r may come from a large µ or a fine spatial grid size compared with
the time increment, implying that the Douglas ADI scheme is not well suited for
either simulating a fast transient phenomenon or for computations on a fine
spatial mesh.

It should be pointed out that there is an operator-splitting method called the
θ-scheme, which is suited for simulating fast transient phenomena[7]. Its
amplification factor is G ~ √–

2

1
when µ is large. However, it is not an ADI scheme

because it does not split a finite difference algorithm into a sequence of one-
dimensional operations. Hence, iteration must be used for obtaining the
solution at each time step, which leads to problems in computing time.

To determine the accuracy of the generalized scheme, we replace uijk by u(xi,
yj, zk) in (2.6) to obtain

(2.16)

By Taylor series,
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(2.17)

Therefore, at time t = (n + 12)∆t,

(2.18)

which is first-order in accuracy. If ε is small, accuracy will be high. This raises
the question as to how small ε should be chosen if both the amplification factor
and accuracy are considered. To obtain a G value (G ~ √–

2

1
= 0.707) similar to that

of the θ-scheme when r is large, we choose ε = 0.05, which gives, from (2.15),
G ~ 0.741. In practice, ∆t is usually chosen not to be very small. Therefore, with
ε = 0.05 the accuracy of the generalized Douglas ADI scheme is 0[h2 + ∆t2 +
0.05∆t].

3. Generalized divide and conquer procedures
Consider solving a tridiagonal linear system

(3.1)

In matrix form equation (3.1) can be expressed as
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The usual approach for solving the above tridiagonal linear system is the
Gaussian elimination technique. This approach results in a procedure called the
“divide and conquer” procedure, shown as follows:

(3.3a)

(3.3b)

(3.3c)

In the above procedure, βk, νk are calculated from k = 1 to k = n, while xk is
computed from k = n to k =1. A similar procedure that is opposite in direction
can be expressed as

(3.4a)

(3.4b)

(3.4c)

Further, if xo and xn+1 are not zero, one has 

(3.5a)

(3.5b)

(3.5c)

(3.2)
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(3.5d)

and

(3.6a)

(3.6b)

(3.6c)

(3.6d)

Thus, combining procedures (3.3) and (3.4), one can develop a generalized
“divide and conquer” procedure. To this end, let n = 2N + 1 for convenience and
divide the system (3.1) into two subsystems, which consist of the first N
equations and the last N equations, with the (N + 1)th equation denoting the
interface. As such, the procedure can be described as follows:

Procedure 1

Further, combining (3.3), (3.4), (3.5) and (3.6), one can develop a more
complicated generalized “divide and conquer” procedure. To this end, let n = 3N
+ 2, for convenience. We divide the system (3.1) into three subsystems, which
consist of the first N equations, the middle N equations and the last N equations.
The (N + 1)th and the (2N + 2)th equations designate the interfacial equations.
As such, the procedure can be described as follows:
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Procedure 2

The idea of the above generalized “divide and conquer” procedures can be
applied to a tridiagonal linear system which is divided into many subsystems.
It should be pointed out that the generalized “divide and conquer” procedures
are one type of the domain decomposition methods[8]. Therefore, they are
characterized by a high inherent parallelism. 

4. Numerical models for solving parabolic equations on 
multilayers
Consider a three-dimensional domain with three layers, as shown in Figure 1.
Three-dimensional parabolic differential equations on three layers can be
expressed as
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(4.1a)

(4.1b)

(4.1c)

We assume that the flux across the interface does not change. As such, at z = H,

(4.2a)

and at z = 2H,

(4.2b)

To obtain the numerical solution in the three-dimensional case, we assume that
there is a mesh grid of Nx × Ny × Nz for each of the layers with the same grid size
∆x , ∆y and ∆z, where (Nx + 1)∆x = L, (Ny + 1)∆y = L and (Nz + 1)∆z = H. We
employ the generalized Douglas ADI scheme in Section 2 to solve equations
(4.1). As such, 

Figure 1.
Three-dimensional
domain with three
layers for equations
(4.1a, 1.1b and 4.1c)

H

H

H

L

U1

U2

U3

L

Y

X

Z
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(4.3a)

(4.3b)

(4.3c)

where l represents the (l)th layer (l = 1, 2, 3). For the interfacial equations, we let,
at any time step n,

(4.4a)

and

(4.4b)

Hence, the computational procedure of the three-dimensional model is as
follows:

The first step is to determine

by using equation (4.3a). To this end, we solve three tridiagonal linear systems
to obtain

i = 1, …, Nx, j = 1, …, Ny, k = 1, …, Nz, independently, then, we substitute (u1)n+1
3

ijNz
and (u2)n+1

3
ij1

into equation (4.4a) to obtain (u1)n+1
3

ijNz+1
, and (u1)n+1

3
ijNz+1

and (u2)n+1
3

ijo
, and

(u2)n+1
3

ijNz
and (u3)n+1

3
ij1

into equation (4.4b) to obtain (u2)n+1
3

ijNz+1
and (u3)n+1

3
ijo

. 
Similarly, the second step is to determine

( ) , ( ) ( )u u  and u1 ijk

n+
2 ijk

n+
3 ijk

n+2
3

2
3

2
3
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by using equation (4.3b).
The third step is to determine

by using equation (4.3c). As such, we express equations (4.3c), with l = 1, 2, 3, as
three tridiagonal linear systems.

(4.5a)

(4.5b)

(4.5c)

where i = 1, …, Nx and j = 1, …, Ny. Since ul (l = 1, 2, 3) at the (n + 1)∆t time step
is unknown at the interface between layers, the above three tridiagonal linear
systems cannot be solved. To overcome this difficulty, we apply the generalized
“divide and conquer” Procedure 2, and calculate the coefficients listed in step 1
of Procedure 2, then, substitute the following four equations:

(4.6)

into the interfacial equations (4.4a) and (4.4b) to obtain (u1)n+1
ijNz+1, (u2)ijo

n+1,
(u2)n+1

ijNz+1 and (u3)ijo
n+1. Finally, we solve for the rest of the unknowns in {(u1)ijk

n+1},
{(u2)ijk

n+1} and {(u3)ijk
n+1} by step 3 of Procedure 2.

The above iterations are continued until the steady state solution is obtained.
A similar numerical procedure for the two layer case can be obtained by

Procedure 1 described in Section 3. It should be pointed out that the above
procedure is one type of the domain decomposition methods for solving
parabolic differential equations[9]. 

5. Numerical examples
To illustrate the advantage of the generalized Douglas ADI scheme, we first
consider a three-dimensional parabolic differential equation.

(5.1)

( ) , ( ) ( )u u  and u1 ijk
n+1

2 ijk
n+1

3 ijk
n+1{ } { } { }
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with its exact solution given as

(5.2)
Initial and boundary conditions are obtained from the exact solution. From (5.2),
it is seen that for large µ, the solution converges fast to the steady state solution
(which is zero) as time increases. Hence, the equation in (5.1) has a fast transient
phenomenon.

Equation (5.1) was solved by using the generalized ADI scheme (2.3). In our
calculation, we first chose ∆x = ∆y = ∆z = h = π

50 and ∆t = 0.01. To obtain the
steady state solution, the time iteration was continued until max|u| ≤ 10–3 was
satisfied. The number of iterations for different µ values 10, 100 and 200 are
compared with that of the Douglas ADI scheme (2.2), Table I.

From Table I, it can be seen that the solution from the Douglas scheme
converges very slowly when µ is large. Convergence of the numerical solutions
from the generalized scheme was much faster than that from the Douglas
scheme. This shows that the new scheme is suitable for simulating fast
transient phenomena.

We now consider 

(5.3)

with its exact solution given as

(5.4)

We chose ∆t = 0.1 with difference grid sizes, h = 0.1, 0.05 and 0.01. Again, to
obtain the steady state solution (which is zero), the time iteration was continued
until max|u| ≤ 10–3 was satisfied. The number of iterations for µ = 1.0 is
compared with that of the Douglas ADI scheme (2.2), Table II.

ADI n(h = 0.1) n(h = 0.05) n(n = 0.01)

Douglas scheme 20 70 1,681
Scheme (2.3) (ε = 0.05) 16 31 59
Exact solution 9 9 9

Table II.
Number of iterations,

n (n∆t = t)

ADI n(µ = 10) n(µ = 100) n(µ = 200)

Douglas scheme 81 432 1,194
Scheme (2.3) (ε = 0.05) 81 50 40
Exact solution 81 9 5

Table I.
Number of iterations,

n (n∆t = t)
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From Table II, it can be seen that the solution from the Douglas scheme
converges very slowly when the spatial grid is fine. Convergence of the
numerical solutions from the generalized scheme was much faster than that
from the Douglas scheme. For h = 0.01, the Douglas scheme took 2,130 minutes
of CPU time on the NCD workstation while the generalized Douglas scheme
only took 60 minutes. This shows that the new scheme is suitable for
computations on fine spatial meshes, which makes it applicable to
micromanufacturing, such as the prediction of the temperature profile in x-ray
lithography.

We now consider the three-dimensional heat conduction on three layers.

(5.5a)

(5.5b)

and

(5.5c)

This situation may be encountered in x-ray lithography, used in
micromanufacturing. The three layers are composed of a mask, a photoresist
and a substrate. For this example, it is of interest to predict the temperature
profile in each of the layers. Each layer is chosen to be of dimension 0.1(cm) ×
0.1(cm) × 0.01(cm) as shown in Figure 2. The initial and boundary value

Figure 2.
Three-dimensional
domain with three
layers for the example
of equation (5.5)

0.1cm

U1

U2

U3

0.1cm

Y

X
0.01cm

0.01cm

0.01cm

U1 = 310.0(K)

U3 = 300.0(K)

Z
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problem with homogeneous conditions (Um = 300 (K), m = 1, 2, 3 ) except U1 =
310.0 (K) at z = 0.0 is considered. Problem (5.5) with initial and boundary
conditions is computed by using the numerical procedure described in Section
4. In this calculation, we chose ∆x = ∆y = 0.002 (cm) , ∆z = 0.0002 (cm) and ∆t
= 0.01 (seconds). The contours of the temperature profile in the cross section at
y = 0.05cm with various µ1, µ2 and µ3 values when t = 1.0 (seconds) are plotted
in Figures 3 and 4. The case µ1 = µ2 = µ3 = 1.0 (Wcm2/J) with ε1 = ε2 = ε3 = 0.05
is shown in Figure 3. When µ3 = 10.0 (Wcm2/J), it is seen that most of the heat
in layer 3 was transferred to the outside, as shown in Figure 4.
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